Can polylogarithms at algebraic points be linearly independent?
Work
Year: 2020
Type: article
Abstract: Let $r,m$ be positive integers. Let $0\le x <1$ be a rational number. Let $\Phi_s(x,z)$ be the $s$-th Lerch function $\sum_{k=0}^{\infty}\tfrac{z^{k+1}}{(k+x+1)^s}$ with $s=1,2,\ldots ,r$. When $x=0$,... more
Institutions Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Chennai Mathematical Institute, Nihon University +1 more
Cites: 37
Cited by: 6
Related to: 10
FWCI: 2.128
Citation percentile (by year/subfield): 74.08
Subfield: Algebra and Number Theory
Field: Mathematics
Domain: Physical Sciences
Open Access status: green